Data Export
Exporting sample deliverables to S3¶
This shortcut enables the user to export all or a subset of sample deliverables to AWS S3 created by Gencove's analysis pipeline.
The shortcut's input_helper()
method accepts:
- Gencove project id
- Optional list of file types
- Optional list of sample statuses; if not defined otherwise, only
succeeded
samples are used
and returns a dictionary containing a list of Sample objects from the Gencove platform.
Alternatively, the user may provide a list of Sample objects to the shortcut without using input_helper()
.
If the user is copying the files to a bucket that is outside of Explorer workspace, standard AWS credentials need to be provided.
from gencove_explorer_library.shortcuts.export_sample_deliverables import ExportSampleDeliverablesToS3
input_parameters = ExportSampleDeliverablesToS3.input_helper("aa3a46e0-c390-4943-b613-26f9908367d5")
export = ExportSampleDeliverablesToS3(
s3_path="s3://bucket/prefix/",
aws_session_configuration={
"aws_access_key_id": "AKIA...",
"aws_secret_access_key": "123...",
},
**input_parameters,
).run()
Exporting sample deliverables to Azure¶
This shortcut enables the user to export all or a subset of sample deliverables to Microsoft Azure Storage created by Gencove's analysis pipeline.
The shortcut's input_helper()
method accepts:
- Gencove project id
- Optional list of file types
- Optional list of sample statuses; if not defined otherwise, only
succeeded
samples are used
and returns a dictionary containing a list of Sample objects from the Gencove platform.
Alternatively, the user may provide a list of Sample objects to the shortcut without using input_helper()
.
In order to be able to upload to Azure Storage, the user needs to provide a connection string.
from gencove_explorer_library.shortcuts.export_sample_deliverables import ExportSampleDeliverablesToAzureStorage
input_parameters = ExportSampleDeliverablesToAzureStorage.input_helper("aa3a46e0-c390-4943-b613-26f9908367d5")
export = ExportSampleDeliverablesToAzureStorage(
azure_container_name="my-container",
azure_blob_path="foo/bar/baz",
azure_connection_string="DefaultEndpointsProtocol=https;AccountName=storagesample;AccountKey=<account-key>",
**input_parameters,
).run()
Exporting sample deliverables to GCP¶
This shortcut enables the user to export all or a subset of sample deliverables to GCP Cloud Storage created by Gencove's analysis pipeline.
The shortcut's input_helper()
method accepts:
- Gencove project id
- Optional list of file types
- Optional list of sample statuses; if not defined otherwise, only
succeeded
samples are used
and returns a dictionary containing a list of Sample objects from the Gencove platform.
Alternatively, the user may provide a list of Sample objects to the shortcut without using input_helper()
.
In order to be able to upload to GCP Storage, the user needs to provide a path to a GCP service account JSON credentials file.
from gencove_explorer_library.shortcuts.export_sample_deliverables import ExportSampleDeliverablesToGCPStorage
input_parameters = ExportSampleDeliverablesToGCPStorage.input_helper("aa3a46e0-c390-4943-b613-26f9908367d5")
export = ExportSampleDeliverablesToGCPStorage(
storage_bucket="my-bucket",
storage_path="foo/bar/baz",
gcp_service_account_json_path="credentials.json",
**input_parameters,
).run()